Article ID Journal Published Year Pages File Type
4602786 Linear Algebra and its Applications 2009 9 Pages PDF
Abstract

An explicit representation of the elements of the inverses of certain patterned matrices involving the moments of nonnegative weight functions is derived in this paper. It is shown that a sequence of monic orthogonal polynomials can be generated from a given weight function in terms of Hankel-type determinants and that the corresponding matrix inverse can be expressed in terms of their associated coefficients and orthogonality factors. This result enables one to obtain an explicit representation of a certain type of approximants which apply to a wide class of positive continuous functions. Convenient expressions for the coefficients of standard classical orthogonal polynomials such as Legendre, Jacobi, Laguerre and Hermite polynomials are also provided. Several examples illustrate the results.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory