Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602866 | Linear Algebra and its Applications | 2009 | 17 Pages |
We present several classes of explicit self-adjoint Sturm–Liouville difference operators with either a non-Hermitian leading coefficient function, or a non-Hermitian potential function, or a non-definite weight function, or a non-self-adjoint boundary condition. These examples are obtained using a general procedure for constructing difference operators realizing discrete Sturm–Liouville problems, and the minimum conditions for such difference operators to be self-adjoint with respect to a natural quadratic form. It is shown that a discrete Sturm–Liouville problem admits a difference operator realization if and only if it does not have all complex numbers as eigenvalues. Spectral properties of self-adjoint Sturm–Liouville difference operators are studied. In particular, several eigenvalue comparison results are proved.