Article ID Journal Published Year Pages File Type
4602919 Linear Algebra and its Applications 2008 22 Pages PDF
Abstract

We establish theoretical comparison results for algebraic multi-level methods applied to non-singular non-symmetric M-matrices. We consider two types of multi-level approximate block factorizations or AMG methods, the AMLI and the MAMLI method. We compare the spectral radii of the iteration matrices of these methods. This comparison shows, that the spectral radius of the MAMLI method is less than or equal to the spectral radius of the AMLI method. Moreover, we establish how the quality of the approximations in the block factorization effects the spectral radii of the iteration matrices. We prove comparisons results for different approximations of the fine grid block as well as for the used Schur complement. We also establish a theoretical comparison between the AMG methods and the classical block Jacobi and block Gauss–Seidel methods.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory