Article ID Journal Published Year Pages File Type
4603116 Linear Algebra and its Applications 2009 21 Pages PDF
Abstract

We show that the singularities of a matrix-valued noncommutative rational function which is regular at zero coincide with the singularities of the resolvent in its minimal state space realization. The proof uses a new notion of noncommutative backward shifts. As an application, we establish the commutative counterpart of the singularities theorem: the singularities of a matrix-valued commutative rational function which is regular at zero coincide with the singularities of the resolvent in any of its Fornasini–Marchesini realizations with the minimal possible state space dimension. The singularities results imply the absence of zero-pole cancellations in a minimal factorization, both in the noncommutative and in the commutative setting.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory