Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4603132 | Linear Algebra and its Applications | 2009 | 12 Pages |
Abstract
The scrambling index of a primitive digraph D is the smallest positive integer k such that for every pair of vertices u and v, there is a vertex w such that we can get to w from u and v in D by directed walks of length k; it is denoted by k(D). In [M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, preprint] we gave the upper bound on k(D) in terms of the order and the girth of a primitive digraph D. In this paper, we characterize all the primitive digraphs such that the scrambling index is equal to the upper bound.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory