Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4603156 | Linear Algebra and its Applications | 2009 | 5 Pages |
Abstract
King and Ruskai asked whether the p→qp→q norm of a completely positive map ΦΦ, acting between Schatten p and q classes of Hermitian operators,‖Φ‖p→q=supA=A∗‖Φ(A)‖q‖A‖p,is equal to the p→qp→q norm of that map when acting between Schatten classes of general, not necessarily Hermitian, operators. The first proof of this statement has been given by Watrous. Here, we give an alternative proof that is also valid for 2-positive maps ΦΦ.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Koenraad M.R. Audenaert,