Article ID Journal Published Year Pages File Type
4603246 Linear Algebra and its Applications 2008 9 Pages PDF
Abstract

We say that the product of a row vector and a column vector is intrinsic if there is at most one nonzero product of corresponding coordinates. Analogously we speak about intrinsic product of two or more matrices, as well as about intrinsic factorizations of matrices. Since all entries of the intrinsic product are products of entries of the multiplied matrices, there is no addition. We present several examples, together with important applications. These applications include companion matrices and sign-nonsingular matrices.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory