Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4603255 | Linear Algebra and its Applications | 2008 | 9 Pages |
Abstract
Let AA be an n×nn×n nonnegative matrix with the spectrum (λ1,λ2,…,λn)(λ1,λ2,…,λn) and let A1A1 be an m×mm×m principal submatrix of AA with the spectrum (μ1,μ2,…,μm)(μ1,μ2,…,μm). In this paper we present some cases where the realizability of (μ1,μ2,…,μm,ν1,ν2,…,νs)(μ1,μ2,…,μm,ν1,ν2,…,νs) implies the realizability of (λ1,λ2,…,λn,ν1,ν2,…,νs)(λ1,λ2,…,λn,ν1,ν2,…,νs) and consider the question whether this holds in general. In particular, we show that the list(λ1,λ2,…,λn,-μ1,-μ2,…,-μm)(λ1,λ2,…,λn,-μ1,-μ2,…,-μm)is realizable.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Thomas J. Laffey, Helena Šmigoc,