Article ID Journal Published Year Pages File Type
4603326 Linear Algebra and its Applications 2006 6 Pages PDF
Abstract

Let T be a tree with n vertices and let D be the distance matrix of T. According to a classical result due to Graham and Pollack, the determinant of D is a function of n, but does not depend on T. We allow the edges of T to carry weights, which are square matrices of a fixed order. The distance matrix D of T is then defined in a natural way. We obtain a formula for the determinant of D, which involves only the determinants of the sum and the product of the weight matrices.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory