Article ID Journal Published Year Pages File Type
4603426 Linear Algebra and its Applications 2006 21 Pages PDF
Abstract

In this paper, continuous methods are introduced to compute both the extreme and interior eigenvalues and their corresponding eigenvectors for real symmetric matrices. The main idea is to convert the extreme and interior eigenvalue problems into some optimization problems. Then a continuous method which includes both a merit function and an ordinary differential equation (ODE) is introduced for each resulting optimization problem. The convergence of each ODE solution is proved for any starting point. The limit of each ODE solution for any starting point is fully studied. Both the extreme and the interior eigenvalues and their corresponding eigenvectors can be easily obtained under a very mild condition. Promising numerical results are also presented.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory