Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4603455 | Linear Algebra and its Applications | 2007 | 38 Pages |
Abstract
Canonical forms are described for pairs of quaternionic matrices, or equivalently matrix pencils, where one matrix is symmetric and the other matrix is skewsymmetric, under strict equivalence and symmetry respecting congruence. The symmetry is understood in the sense of a fixed involutory antiautomorphism of the skew field of the real quaternions; the involutory antiautomorphism is assumed to be nonstandard, i.e., other than the quaternionic conjugation. Some applications are developed, such as canonical forms for quaternionic matrices under symmetry respecting congruence, and canonical forms for matrices that are skewsymmetric with respect to a nondegenerate symmetric or skewsymmetric quaternion valued inner product.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory