Article ID Journal Published Year Pages File Type
4603468 Linear Algebra and its Applications 2008 11 Pages PDF
Abstract

We study ideals of Novikov algebras and Novikov structures on finite-dimensional Lie algebras. We present the first example of a three-step nilpotent Lie algebra which does not admit a Novikov structure. On the other hand we show that any free three-step nilpotent Lie algebra admits a Novikov structure. We study the existence question also for Lie algebras of triangular matrices. Finally we show that there are families of Lie algebras of arbitrary high solvability class which admit Novikov structures.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory