Article ID Journal Published Year Pages File Type
4603476 Linear Algebra and its Applications 2008 12 Pages PDF
Abstract

Based on fixed point theorems for monotone and mixed monotone operators in a normal cone, we prove that the nonlinear matrix equation always has a unique positive definite solution. A conjecture which is proposed in [X.G. Liu, H. Gao, On the positive definite solutions of the matrix equation Xs±ATX-tA=In, Linear Algebra Appl. 368 (2003) 83–97] is solved. Multi-step stationary iterative method is proposed to compute the unique positive definite solution. Numerical examples show that this iterative method is feasible and effective.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory