Article ID Journal Published Year Pages File Type
4603495 Linear Algebra and its Applications 2008 9 Pages PDF
Abstract

In this paper we investigate generalized circulant permutation matrices of composite order. We give a complete characterization of the order and the structure of symmetric generalized k-circulant permutation matrices in terms of circulant and retrocirculant block (0, 1)-matrices in which each block contains exactly one or two entries 1. In particular, we prove that a generalized k-circulant matrix A of composite order n = km is symmetric if and only if either k = m − 1 or k ≡ 0 or k ≡ 1 mod m, and we obtain three basic symmetric generalized k-circulant permutation matrices, from which all others are obtained via permutations of the blocks or by direct sums. Furthermore, we extend the characterization of these matrices to centrosymmetric matrices.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory