Article ID Journal Published Year Pages File Type
4603496 Linear Algebra and its Applications 2008 11 Pages PDF
Abstract

We consider a class of graphs subject to certain restrictions, including the finiteness of diameters. Any surjective mapping φ:Γ→Γ′ between graphs from this class is shown to be an isomorphism provided that the following holds: Any two points of Γ are at a distance equal to the diameter of Γ if, and only if, their images are at a distance equal to the diameter of Γ′. This result is then applied to the graphs arising from the adjacency relations of spaces of rectangular matrices, spaces of Hermitian matrices, and Grassmann spaces (projective spaces of rectangular matrices).

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory