Article ID Journal Published Year Pages File Type
4603578 Linear Algebra and its Applications 2008 18 Pages PDF
Abstract

In this paper we consider collections of compact (resp. Cp class) operators on arbitrary Banach (resp. Hilbert) spaces. For a subring R of reals, it is proved that an R-algebra of compact operators with spectra in R on an arbitrary Banach space is triangularizable if and only if every member of the algebra is triangularizable. It is proved that every triangularizability result on certain collections, e.g., semigroups, of compact operators on a complex Banach (resp. Hilbert) space gives rise to its counterpart on a real Banach (resp. Hilbert) space. We use our main results to present new proofs as well as extensions of certain classical theorems (e.g., those due to Kolchin, McCoy, and others) on arbitrary Banach (resp. Hilbert) spaces.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory