Article ID Journal Published Year Pages File Type
4603595 Linear Algebra and its Applications 2007 10 Pages PDF
Abstract

It is well known that the ratio bound is an upper bound on the stability number α(G) of a regular graph G. In this note it is proved that, if G is a graph whose edge is a union of classes of a symmetric association scheme, the Delsarte’s linear programming bound can alternatively be stated as the minimum of a set of ratio bounds. This result follows from a recently established relationship between a set of convex quadratic bounds on α(G) and the number ϑ′(G), a well known variant of the Lovász theta number, which was introduced independently by Schrijver [A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory 25 (1979) 425–429] and McEliece et al. [R.J. McEliece, E.R. Rodemich, H.C. Rumsey Jr, The Lovász bound and some generalizations, J. Combin. Inform. System Sci. 3 (1978) 134–152].

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory