Article ID Journal Published Year Pages File Type
4603671 Linear Algebra and its Applications 2007 15 Pages PDF
Abstract

The paper studies the eigenvalue distribution of some special matrices. Tong in Theorem 1.2 of [Wen-ting Tong, On the distribution of eigenvalues of some matrices, Acta Math. Sinica (China), 20 (4) (1977) 273–275] gives conditions for an n × n matrix A ∈ SDn ∪ IDn to have |JR+(A)| eigenvalues with positive real part, and |JR-(A)| eigenvalues with negative real part. A counter-example is given in this paper to show that the conditions of the theorem are not true. A corrected condition is then proposed under which the conclusion of the theorem holds. Then the corrected condition is applied to establish some results about the eigenvalue distribution of the Schur complements of H-matrices with complex diagonal entries. Several conditions on the n × n matrix A and the subset α ⊆ N = {1, 2, … , n} are presented such that the Schur complement matrix A/α of the matrix A has eigenvalues with positive real part and eigenvalues with negative real part.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory