Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4603678 | Linear Algebra and its Applications | 2007 | 4 Pages |
Abstract
Let A1, … , Ak be positive semidefinite matrices and B1, … , Bk arbitrary complex matrices of order n. We show thatspan{(A1x)∘(A2x)∘⋯∘(Akx)|x∈Cn}=range(A1∘A2∘⋯∘Ak)span{(A1x)∘(A2x)∘⋯∘(Akx)|x∈Cn}=range(A1∘A2∘⋯∘Ak)andspan{(B1x1)∘(B2x2)∘⋯∘(Bkxk)|xj∈Cn}=range(B1B1∗)∘(B2B2∗)∘⋯∘(BkBk∗),where ∘ means the Hadamard product. This generalizes two recent results of Sun, Du and Liu.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Li Qiu, Xingzhi Zhan,