Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4603708 | Linear Algebra and its Applications | 2007 | 21 Pages |
Abstract
An n × n sign pattern Sn is potentially nilpotent if there is a real matrix having sign pattern Sn and characteristic polynomial xn. A new family of sign patterns Cn with a cycle of every even length is introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix with sign pattern Cn. These nilpotent matrices are used together with a Jacobian argument to show that Cn is spectrally arbitrary, i.e., there is a real matrix having sign pattern Cn and characteristic polynomial for any real μi. Some results and a conjecture on minimality of these spectrally arbitrary sign patterns are given.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory