Article ID Journal Published Year Pages File Type
4603738 Linear Algebra and its Applications 2007 12 Pages PDF
Abstract

In this paper, our main objective is to study the effect of appending/deleting a column/row on the shorted operators. It turns out that for matrices A and B for which the shorted operator S(A|B) exists, S(A1|B1) of the matrix A1=[A:a] with respect to the matrix B1=[B:b], when it exists, is obtained by appending a suitable column to S(A|B). Moreover, if S(A1|B1) exists, then S(A|B) exists and is obtained from S(A1|B1) by dropping its last column. In the process, we study the effect of appending/deleting a column/row on the space pre-order and the parallel sum of parallel summable matrices. Finally, we specialize to the case of and matrices and study the effect of bordering (by an additional column and a row) on the shorted operator. We conclude the paper with an application to Linear Models with singular dispersion structure.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory