Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4603781 | Linear Algebra and its Applications | 2007 | 17 Pages |
Abstract
A Q-algebra can be represented as an operator algebra on an infinite dimensional Hilbert space. However we don’t know whether a finite n-dimensional Q-algebra can be represented on a Hilbert space of dimension n except n = 1, 2. It is known that a two dimensional Q-algebra is just a two dimensional commutative operator algebra on a two dimensional Hilbert space. In this paper we study a finite n-dimensional semisimple Q-algebra on a finite n-dimensional Hilbert space. In particular we describe a three dimensional Q-algebra of the disc algebra on a three dimensional Hilbert space. Our studies are related to the Pick interpolation problem for a uniform algebra.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory