Article ID Journal Published Year Pages File Type
4603781 Linear Algebra and its Applications 2007 17 Pages PDF
Abstract

A Q-algebra can be represented as an operator algebra on an infinite dimensional Hilbert space. However we don’t know whether a finite n-dimensional Q-algebra can be represented on a Hilbert space of dimension n except n = 1, 2. It is known that a two dimensional Q-algebra is just a two dimensional commutative operator algebra on a two dimensional Hilbert space. In this paper we study a finite n-dimensional semisimple Q-algebra on a finite n-dimensional Hilbert space. In particular we describe a three dimensional Q-algebra of the disc algebra on a three dimensional Hilbert space. Our studies are related to the Pick interpolation problem for a uniform algebra.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory