Article ID Journal Published Year Pages File Type
4603841 Linear Algebra and its Applications 2006 18 Pages PDF
Abstract

Several upper bounds on the largest Laplacian eigenvalue of a graph G, in terms of degree and average degree of neighbors of its vertices, have been proposed in the literature. We show that all these bounds, as well as many conjectured new ones, can be generated systematically using some simple algebraic manipulations. Bounds depending on the edges of G are also generated. Moreover, the interestingness of bounds is discussed, in terms of dominance and tightness. Finally, we give a unified way of proving a sample of these bounds.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory