Article ID Journal Published Year Pages File Type
4603881 Linear Algebra and its Applications 2006 17 Pages PDF
Abstract

We derive some Moore-like bounds for multipartite digraphs, which extend those of bipartite digraphs, under the assumption that every vertex of a given partite set is adjacent to the same number δ of vertices in each of the other independent sets. We determine when a multipartite Moore digraph is weakly distance-regular. Within this framework, some necessary conditions for the existence of a r-partite Moore digraph with interpartite outdegree δ > 1 and diameter k = 2m are obtained. In the case δ = 1, which corresponds to almost Moore digraphs, a necessary condition in terms of the permutation cycle structure is derived. Additionally, we present some constructions of dense multipartite digraphs of diameter two that are vertex-transitive.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory