Article ID Journal Published Year Pages File Type
4603932 Linear Algebra and its Applications 2006 17 Pages PDF
Abstract

Let H be a separable Hilbert space with an orthonormal basis {en/n∈N}, T be a bounded tridiagonal operator on H and Tn be its truncation on span ({e1, e2, … , en}). We study the operator equation Tx = y through its finite dimensional truncations Tnxn = yn. It is shown that if and are bounded, then T is invertible and the solution of Tx = y can be obtained as a limit in the norm topology of the solutions of its finite dimensional truncations. This leads to uniform boundedness of the sequence . We also give sufficient conditions for the boundedness of and in terms of the entries of the matrix of T.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory