Article ID Journal Published Year Pages File Type
4603955 Linear Algebra and its Applications 2006 23 Pages PDF
Abstract

This article presents a new algorithm for obtaining a block diagonalization of Hankel matrices by means of truncated polynomial divisions, such that every block is a lower Hankel matrix. In fact, the algorithm generates a block LU-factorization of the matrix. Two applications of this algorithm are also presented. By the one hand, this algorithm yields an algebraic proof of Frobenius’ Theorem, which gives the signature of a real regular Hankel matrix by using the signs of its principal leading minors. On the other hand, the close relationship between Hankel matrices and linearly recurrent sequences leads to a comparison with the Berlekamp–Massey algorithm.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory