Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4604294 | Annales de l'Institut Henri Poincare (C) Non Linear Analysis | 2013 | 46 Pages |
Abstract
The subject of this paper is the rigorous derivation of a quasistatic evolution model for a linearly elastic–perfectly plastic thin plate. As the thickness of the plate tends to zero, we prove via Γ-convergence techniques that solutions to the three-dimensional quasistatic evolution problem of Prandtl–Reuss elastoplasticity converge to a quasistatic evolution of a suitable reduced model. In this limiting model the admissible displacements are of Kirchhoff–Love type and the stretching and bending components of the stress are coupled through a plastic flow rule. Some equivalent formulations of the limiting problem in rate form are derived, together with some two-dimensional characterizations for suitable choices of the data.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis