Article ID Journal Published Year Pages File Type
4604322 Annales de l'Institut Henri Poincare (C) Non Linear Analysis 2013 29 Pages PDF
Abstract

This paper is concerned with the analysis of a sixth-order nonlinear parabolic equation whose solutions describe the evolution of the particle density in a quantum fluid. We prove the global-in-time existence of weak nonnegative solutions in two and three space dimensions under periodic boundary conditions. Moreover, we show that these solutions are smooth and classical whenever the particle density is strictly positive, and we prove the long-time convergence to the spatial homogeneous equilibrium at a universal exponential rate. Our analysis strongly uses the Lyapunov property of the entropy functional.

Related Topics
Physical Sciences and Engineering Mathematics Analysis