Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4604361 | Annales de l'Institut Henri Poincare (C) Non Linear Analysis | 2012 | 22 Pages |
Abstract
We discuss the Γ-convergence, under the appropriate scaling, of the energy functional‖u‖Hs(Ω)2+∫ΩW(u)dx, with s∈(0,1)s∈(0,1), where ‖u‖Hs(Ω)‖u‖Hs(Ω) denotes the total contribution from Ω in the HsHs norm of u, and W is a double-well potential.When s∈[1/2,1)s∈[1/2,1), we show that the energy Γ -converges to the classical minimal surface functional – while, when s∈(0,1/2)s∈(0,1/2), it is easy to see that the functional Γ-converges to the nonlocal minimal surface functional.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Ovidiu Savin, Enrico Valdinoci,