Article ID Journal Published Year Pages File Type
4604361 Annales de l'Institut Henri Poincare (C) Non Linear Analysis 2012 22 Pages PDF
Abstract

We discuss the Γ-convergence, under the appropriate scaling, of the energy functional‖u‖Hs(Ω)2+∫ΩW(u)dx, with s∈(0,1)s∈(0,1), where ‖u‖Hs(Ω)‖u‖Hs(Ω) denotes the total contribution from Ω   in the HsHs norm of u, and W is a double-well potential.When s∈[1/2,1)s∈[1/2,1), we show that the energy Γ  -converges to the classical minimal surface functional – while, when s∈(0,1/2)s∈(0,1/2), it is easy to see that the functional Γ-converges to the nonlocal minimal surface functional.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,