Article ID Journal Published Year Pages File Type
4604463 Annales de l'Institut Henri Poincare (C) Non Linear Analysis 2011 24 Pages PDF
Abstract

We prove under some general assumptions on elastic energy densities (namely, frame indifference, minimality at identity, non-degeneracy and existence of a quadratic expansion at identity) that homogenization and linearization commute at identity. This generalizes a recent result by S. Müller and the second author by dropping their assumption of periodicity. As a first application, we extend their Γ-convergence commutation diagram for linearization and homogenization to the stochastic setting under standard growth conditions. As a second application, we prove that the Γ-closure is local at identity for this class of energy densities.

RésuméNous démontrons que linéarisation et homogénéisation commutent à lʼidentité sous des hypothèses générales sur la densité dʼénergie élastique (à savoir indifférence matérielle, minimalité à lʼidentité, non-dégénérescence et existence dʼun développement quadratique à lʼidentité). Ceci généralise un résultat récent de S. Müller et du second auteur au cas non-périodique. En particulier, nous étendons au cas de lʼhomogénéisation stochastique leur diagramme de commutation de la linéarisation et de lʼhomogénéisation au sens de la Γ-convergence. Par ailleurs, nous démontrons que la Γ-fermeture est locale à lʼidentité pour la classe de densités dʼénergie non convexes considérée.

Related Topics
Physical Sciences and Engineering Mathematics Analysis