Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4604490 | Annales de l'Institut Henri Poincare (C) Non Linear Analysis | 2009 | 16 Pages |
We consider a coupled system of parabolic/ODE equations describing solid combustion. For a given rescaling of the reaction term (the high activation energy limit), we show that the limit solution solves a free boundary problem which is to our knowledge new.In the time-increasing case, the limit coincides with the Stefan problem with spatially inhomogeneous coefficients. In general it is a parabolic equation with a memory term.In the first part of our paper we give a characterization of the limit problem in one space dimension. In the second part of the paper, we construct a family of pulsating traveling waves for the limit one phase Stefan problem with periodic coefficients. This corresponds to the assumption of periodic initial concentration of reactant.