Article ID Journal Published Year Pages File Type
4604541 Annales de l'Institut Henri Poincare (C) Non Linear Analysis 2011 28 Pages PDF
Abstract

We study the collision of two solitons for the nonlinear Schrödinger equation iψt=−ψxx+F(2|ψ|)ψ, F(ξ)=−2ξ+O(ξ2) as ξ→0, in the case where one soliton is small with respect to the other. We show that in general, the two soliton structure is not preserved after the collision: while the large soliton survives, the small one splits into two outgoing waves that for sufficiently long times can be controlled by the cubic NLS: iψt=−ψxx−22|ψ|ψ.

Related Topics
Physical Sciences and Engineering Mathematics Analysis