Article ID Journal Published Year Pages File Type
4604756 Annales de l'Institut Henri Poincare (C) Non Linear Analysis 2008 27 Pages PDF
Abstract

A unit-vector field on a convex polyhedron P⊂R3 satisfies tangent boundary conditions if, on each face of P, n takes values tangent to that face. Tangent unit-vector fields are necessarily discontinuous at the vertices of P. We consider fields which are continuous elsewhere. We derive a lower bound for the infimum Dirichlet energy for such tangent unit-vector fields of arbitrary homotopy type h. is expressed as a weighted sum of minimal connections, one for each sector of a natural partition of S2 induced by P. For P a rectangular prism, we derive an upper bound for whose ratio to the lower bound may be bounded independently of h. The problem is motivated by models of nematic liquid crystals in polyhedral geometries. Our results improve and extend several previous results.

Related Topics
Physical Sciences and Engineering Mathematics Analysis