Article ID Journal Published Year Pages File Type
4604869 Annales de l'Institut Henri Poincare (C) Non Linear Analysis 2008 4 Pages PDF
Abstract

In this paper we give a positive answer to the conjecture proposed in [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] by El Soufi et al. concerning the finite time blow-up for solutions of the problem (1), (2) below. More precisely, we give a direct proof of [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] and the conjecture given for the case p>2.

RésuméDans cet article on donne une réponse positive à la conjecture proposeé dans [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] par El Soufi et al. concernant l'explosion en temps fini des solutions du problème (1), (2) ci-dessous. Plus précisément, on donne une preuve directe du [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] ainsi que la conjecture énoncée pour le cas p>2.

Related Topics
Physical Sciences and Engineering Mathematics Analysis