Article ID Journal Published Year Pages File Type
4605111 Applied and Computational Harmonic Analysis 2013 13 Pages PDF
Abstract

We introduce a fast Fourier transform on regular d-dimensional lattices. We investigate properties of congruence class representants, i.e. their ordering, to classify directions and derive a Cooley–Tukey algorithm. Despite the fast Fourier techniques itself, there is also the advantage of this transform to be parallelized efficiently, yielding faster versions than the one-dimensional Fourier transform. These properties of the lattice can further be used to perform a fast multivariate wavelet decomposition, where the wavelets are given as trigonometric polynomials. Furthermore the preferred directions of the decomposition itself can be characterized.

Related Topics
Physical Sciences and Engineering Mathematics Analysis