Article ID Journal Published Year Pages File Type
4605180 Applied and Computational Harmonic Analysis 2013 25 Pages PDF
Abstract

We investigate the reconstruction problem of limited angle tomography. Such problems arise naturally in applications like digital breast tomosynthesis, dental tomography, electron microscopy, etc. Since the acquired tomographic data is highly incomplete, the reconstruction problem is severely ill-posed and the traditional reconstruction methods, e.g. filtered backprojection (FBP), do not perform well in such situations.To stabilize the reconstruction procedure additional prior knowledge about the unknown object has to be integrated into the reconstruction process. In this work, we propose the use of the sparse regularization technique in combination with curvelets. We argue that this technique gives rise to an edge-preserving reconstruction. Moreover, we show that the dimension of the problem can be significantly reduced in the curvelet domain. To this end, we give a characterization of the kernel of the limited angle Radon transform in terms of curvelets and derive a characterization of solutions obtained through curvelet sparse regularization. In numerical experiments, we will show that the theoretical results directly translate into practice and that the proposed method outperforms classical reconstructions.

Related Topics
Physical Sciences and Engineering Mathematics Analysis