Article ID Journal Published Year Pages File Type
4605401 Applied and Computational Harmonic Analysis 2010 26 Pages PDF
Abstract

We consider the problem of approximating a given function in two dimensions by a sum of exponential functions, with complex-valued exponents and coefficients. In contrast to Fourier representations where the exponentials are fixed, we consider the nonlinear problem of choosing both the exponents and coefficients. In this way we obtain accurate approximations with only few terms. Our approach is built on recent work done by G. Beylkin and L. MonzĂłn in the one-dimensional case. We provide constructive methods for how to find the exponents and the coefficients, and provide error estimates. We also provide numerical simulations where the method produces sparse approximations with substantially fewer terms than what a Fourier representation produces for the same accuracy.

Related Topics
Physical Sciences and Engineering Mathematics Analysis