Article ID Journal Published Year Pages File Type
4605594 Applied and Computational Harmonic Analysis 2008 22 Pages PDF
Abstract

In spite of their remarkable success in signal processing applications, it is now widely acknowledged that traditional wavelets are not very effective in dealing multidimensional signals containing distributed discontinuities such as edges. To overcome this limitation, one has to use basis elements with much higher directional sensitivity and of various shapes, to be able to capture the intrinsic geometrical features of multidimensional phenomena. This paper introduces a new discrete multiscale directional representation called the discrete shearlet transform. This approach, which is based on the shearlet transform, combines the power of multiscale methods with a unique ability to capture the geometry of multidimensional data and is optimally efficient in representing images containing edges. We describe two different methods of implementing the shearlet transform. The numerical experiments presented in this paper demonstrate that the discrete shearlet transform is very competitive in denoising applications both in terms of performance and computational efficiency.

Related Topics
Physical Sciences and Engineering Mathematics Analysis