Article ID Journal Published Year Pages File Type
4606067 Differential Geometry and its Applications 2014 14 Pages PDF
Abstract

The purpose of this article is to study the existence and uniqueness of quasi-Einstein structures on 3-dimensional homogeneous Riemannian manifolds. To this end, we use the eight model geometries for 3-dimensional manifolds identified by Thurston. First, we present here a complete description of quasi-Einstein metrics on 3-dimensional homogeneous manifolds with isometry group of dimension 4. In addition, we shall show the absence of such gradient structure on Sol3Sol3, which has 3-dimensional isometry group. Moreover, we prove that Berger's spheres carry a non-trivial quasi-Einstein structure with non-gradient associated vector field, this shows that a theorem due to Perelman cannot be extend to quasi-Einstein metrics. Finally, we prove that a 3-dimensional homogeneous manifold carrying a gradient quasi-Einstein structure is either Einstein or Hκ2×R.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,