Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4606092 | Differential Geometry and its Applications | 2012 | 14 Pages |
In this paper we extend the results on projective changes of complex Finsler metrics obtained in Aldea and Munteanu (2012) [3], by the study of projective curvature invariants of a complex Finsler space. By means of these invariants, the notion of complex Douglas space is then defined. A special approach is devoted to the obtaining of equivalence conditions for a complex Finsler space to be a Douglas one. It is shown that any weakly Kähler Douglas space is a complex Berwald space. A projective curvature invariant of Weyl type characterizes complex Berwald spaces. These must be either purely Hermitian of constant holomorphic curvature, or non-purely Hermitian of vanishing holomorphic curvature. Locally projectively flat complex Finsler metrics are also studied.