Article ID Journal Published Year Pages File Type
4606092 Differential Geometry and its Applications 2012 14 Pages PDF
Abstract

In this paper we extend the results on projective changes of complex Finsler metrics obtained in Aldea and Munteanu (2012) [3], by the study of projective curvature invariants of a complex Finsler space. By means of these invariants, the notion of complex Douglas space is then defined. A special approach is devoted to the obtaining of equivalence conditions for a complex Finsler space to be a Douglas one. It is shown that any weakly Kähler Douglas space is a complex Berwald space. A projective curvature invariant of Weyl type characterizes complex Berwald spaces. These must be either purely Hermitian of constant holomorphic curvature, or non-purely Hermitian of vanishing holomorphic curvature. Locally projectively flat complex Finsler metrics are also studied.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,