Article ID Journal Published Year Pages File Type
4606249 Differential Geometry and its Applications 2011 19 Pages PDF
Abstract

We discuss the question whether a (complete) parallel submanifold M of a Riemannian symmetric space N is an (extrinsically) homogeneous submanifold, i.e. whether there exists a subgroup of the isometries of N which acts transitively on M. In a previous paper, we have discussed this question in case the universal covering space of M is irreducible. It is the subject of this paper to generalize this result to the case when the universal covering space of M has no Euclidian factor.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,