Article ID Journal Published Year Pages File Type
4606382 Differential Geometry and its Applications 2011 20 Pages PDF
Abstract

We present short proofs of all known topological properties of general Busemann G-spaces (at present no other property is known for dimensions more than four). We prove that all small metric spheres in locally G-homogeneous Busemann G-spaces are homeomorphic and strongly topologically homogeneous. This is a key result in the context of the classical Busemann conjecture concerning the characterization of topological manifolds, which asserts that every n-dimensional Busemann G-space is a topological n-manifold. We also prove that every Busemann G-space which is uniformly locally G-homogeneous on an orbal subset must be finite-dimensional.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,