Article ID Journal Published Year Pages File Type
4606520 Differential Geometry and its Applications 2008 9 Pages PDF
Abstract

Amongst other results, we perform a ‘contactization’ method to construct, in every odd dimension, many contact Lie groups with a discrete center, unlike the usual (classical) contactization which only produces Lie groups with a non-discrete center. We discuss some applications and consequences of such a construction, construct several examples and derive some properties. We give classification results in low dimensions. A complete list is supplied in dimension 5. In any odd dimension greater than 5, there are infinitely many locally non-isomorphic solvable contact Lie groups. We also characterize solvable contact Lie algebras whose derived ideal has codimension one. For simplicity, most of the results are given in the Lie algebra version.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,