Article ID Journal Published Year Pages File Type
4606670 Differential Geometry and its Applications 2008 7 Pages PDF
Abstract

The purpose of this paper is to generalize the Liouville theorem for functions which are defined on the complete Riemannian manifolds. Then, we apply it to the isometric immersions between complete Riemannian manifolds in order to obtain an estimate for the size of the image of immersions in terms of the supremum of the length of their mean curvature vector in a quite general setting. The proofs are based on the Calabi's generalization of maximum principle for functions which are not necessarily differentiable.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,