Article ID Journal Published Year Pages File Type
4606787 Journal of Approximation Theory 2016 17 Pages PDF
Abstract

Working on the dd-torus, we show that Besov spaces Bps(Lp(logL)a) modelled on Zygmund spaces can be described in terms of classical Besov spaces. Several other properties of spaces Bps(Lp(logL)a) are also established. In particular, in the critical case s=d/ps=d/p, we characterize the embedding of Bpd/p(Lp(logL)a) into the space of continuous functions.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,