Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4607399 | Journal of Approximation Theory | 2012 | 22 Pages |
The paper presents a bivariate subdivision scheme interpolating data consisting of univariate functions along equidistant parallel lines by repeated refinements. This method can be applied to the construction of a surface passing through a given set of parametric curves. Following the methodology of polysplines and tension surfaces, we define a local interpolator of four consecutive univariate functions, from which we sample a univariate function at the mid-point. This refinement step is the basis to an extension of the 4-point subdivision scheme to our setting. The bivariate subdivision scheme can be reduced to a countable number of univariate, interpolatory, non-stationary subdivision schemes. Properties of the generated interpolant are derived, such as continuity, smoothness and approximation order.