Article ID Journal Published Year Pages File Type
4607399 Journal of Approximation Theory 2012 22 Pages PDF
Abstract

The paper presents a bivariate subdivision scheme interpolating data consisting of univariate functions along equidistant parallel lines by repeated refinements. This method can be applied to the construction of a surface passing through a given set of parametric curves. Following the methodology of polysplines and tension surfaces, we define a local interpolator of four consecutive univariate functions, from which we sample a univariate function at the mid-point. This refinement step is the basis to an extension of the 4-point subdivision scheme to our setting. The bivariate subdivision scheme can be reduced to a countable number of univariate, interpolatory, non-stationary subdivision schemes. Properties of the generated interpolant are derived, such as continuity, smoothness and approximation order.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,