Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4607441 | Journal of Approximation Theory | 2012 | 5 Pages |
Abstract
We prove the following theorem: Let m≥2m≥2 be a given integer and let a,b,ca,b,c be real numbers. The inequalities ∑k=1nm+n−kmsin(kx)>ax2+bx+c>0 hold for all integers n≥2n≥2 and real numbers x∈(0,π)x∈(0,π) if and only if −m−1π≤a<0,b=−aπ,c=0. This refines a result due to Turán.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Horst Alzer, Bent Fuglede,