Article ID Journal Published Year Pages File Type
4607463 Journal of Approximation Theory 2012 33 Pages PDF
Abstract

We establish results on convergence and smoothness of subdivision rules operating on manifold-valued data which are based on a general dilation matrix. In particular we cover irregular combinatorics. For the regular grid case results are not restricted to isotropic dilation matrices. The nature of the results is that intrinsic subdivision rules which operate on geometric data inherit smoothness properties of their linear counterparts.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,