Article ID Journal Published Year Pages File Type
4607580 Journal of Approximation Theory 2012 12 Pages PDF
Abstract

We show that it is possible to approximate the zeta-function of a curve over a finite field by meromorphic functions which satisfy the same functional equation and moreover satisfy (respectively do not satisfy) an analog of the Riemann hypothesis. In the other direction, it is possible to approximate holomorphic functions by simple manipulations of such a zeta-function. No number theory is required to understand the theorems and their proofs, for it is known that the zeta-functions of curves over finite fields are very explicit meromorphic functions. We study the approximation properties of these meromorphic functions.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,