Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4607637 | Journal of Approximation Theory | 2011 | 36 Pages |
Abstract
We consider the problem of approximating functions by sums of few exponentials functions, either on an interval or on the positive half-axis. We study both continuous and discrete cases, i.e. when the function is replaced by a number of equidistant samples. Recently, an algorithm has been constructed by Beylkin and MonzĂłn for the discrete case. We provide a theoretical framework for understanding how this algorithm relates to the continuous case.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Fredrik Andersson, Marcus Carlsson, Maarten V. de Hoop,